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Raúl Alós1, Elisa Ramı́rez1, Francisco Castells1, José Millet1
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Abstract

Chagas disease (ChD) is a chronic parasitic condition
that can lead to severe cardiac complications. The use
of ECG analysis has emerged as a promising tool for
early, non-invasive detection. This work, developed by
the EPBandoleroLab team for the PhysioNet Challenge
2025, presents a deep learning approach for ChD clas-
sification using the CODE-15, SaMi-Trop and PTB-XL
databases. Our methodology explores the effectiveness of
different signal representations, comparing the standard
12-lead ECG with the derived Vectorcardiogram (VCG).
Furthermore, we address the significant class imbalance
through a controlled sampling strategy. Our findings in-
dicate that the model performs best when trained on the
full 12-lead ECG representation with a moderately imbal-
anced dataset. This configuration achieved a mean Chal-
lenge Score of 0.174 in the official phase, positioning us
among the top 30 teams selected for publication.

1. Introduction

Chagas disease (ChD), caused by the protozoan Try-
panosoma cruzi, is a neglected tropical disease affecting
millions in Latin America. In its chronic phase, it can
lead to severe cardiac complications. Transmission occurs
primarily via triatomine insects (”kissing bugs”) and other
routes [1].

Although the acute phase is often asymptomatic, a sig-
nificant proportion of patients develop chronic ChD car-
diomyopathy, characterized by ventricular dysfunction,
thromboembolism, arrhythmias and dysautonomia [2].
Early diagnosis is crucial but is often hindered by limited
access to serological testing in rural or under-resourced
settings.

ECG, as a low-cost and widely available diagnostic tool,
holds promise for detecting early signs of chronic ChD car-
diomyopathy. Certain alterations in ECG, such as right
bundle branch block, premature ventricular beats, ST-T
changes, abnormal Q waves, various degrees of AV block,

sick sinus syndrome and low QRS voltage, may suggest
ChD even in asymptomatic individuals [2, 3].

The 2025 PhysioNet Challenge [4–6] focuses precisely
on this problem: detecting ChD disease using standard 12-
lead ECG recordings via machine learning and deep learn-
ing methods.

Recent studies highlight the strong potential of AI in
ECG-based disease detection, with deep neural networks
surpassing medical residents and accurately classifying
multiple arrhythmias [7].

2. Materials

The dataset provided for the PhysioNet Challenge 2025
comprises three distinct ECG databases, each offering
unique characteristics relevant to the ChD detection task:
• CODE-15%: Subset of the larger CODE cohort, with
over 300,000 12-lead ECGs (7.3–10.2 s, 400 Hz) collected
in Brazil between 2010–2016, split into 18 partitions. Cha-
gas labels are self-reported (weak) with unknown accuracy
and low prevalence, introducing real-world noise and vari-
ability [8].

• SaMi-Trop: Contains 1,631 12-lead ECGs recorded be-
tween 2011–2012 from patients in Brazilian endemic re-
gions. Chagas diagnosis is serologically confirmed, mak-
ing this the only strongly labeled positive dataset [9]

• PTB-XL: Includes 21,799 12-lead ECGs from Germany
(10 s, 500 Hz). Due to its European origin, it is assumed to
be Chagas-negative, providing a clean, low-noise negative
class [10].

To create a robust held-out test set for evaluating gen-
eralization, we randomly held out two of the eighteen
CODE-15% partitions. This held-out set was reserved ex-
clusively for final testing and was not used during training
or hyperparameter tuning.

The remaining data, including the other 16 CODE-15%
partitions, SaMi-Trop, and PTB-XL constituted our devel-
opment set. From this set, various experimental subsets
were generated using a data sampling strategy, which is
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further detailed in the Methods section. Each of these sub-
sets was then split at the patient level into training (70%)
and validation (30%) partitions.

The final test sets, used for the official evaluation and
ranking of competitors, remain hidden and are exclusively
accessed by the event organizers.

3. Methods

3.1. Data Selection and Preprocessing

Due to a class imbalance favoring negative cases, a data
selection strategy was implemented. While all positive
records from the three databases were included, negative
samples were filtered based on demographic characteris-
tics (age and gender). This allowed us to control the ratio
between negative and positive records using a balancing
parameter R to experimentally investigate whether a con-
trolled imbalance is beneficial for the model’s generaliza-
tion.

The signals were preprocessed by resampling to 400
Hz, followed by a two-stage filtering process (median and
wavelet) to remove noise. Each lead was then standardized
using Z-score normalization. To create fixed-length in-
puts, signals were segmented into 1024-sample windows.
Patient-level data splits were enforced to prevent data leak-
age, and the final inference for a record is the average of
its segment probabilities.

3.2. Signal Representation: ECG vs. VCG

To determine the most effective input representation,
an experimental comparison was conducted between two
modalities. The first is the standard 12-lead ECG, which
provides detailed temporal information of the cardiac vec-
tor voltage from multiple anatomical perspectives.

As an alternative, the VCG was evaluated, a three-
dimensional representation of the heart’s electrical activity
mathematically derived from the 12 leads using the inverse
Dower transformation (DT) matrix. The VCG projects the
information onto three orthogonal axes (X, Y, Z), offering
a spatial view of the cardiac vector.

The underlying hypothesis is that the VCG, by eliminat-
ing the inherent redundancy among ECG leads, could al-
low the model to learn global diagnostic features more effi-
ciently [11]. However, it is important to acknowledge that
the DT is an estimate of the true cardiac vector, not a direct
measurement, which entails the risk of introducing slight
signal distortion. This experiment therefore investigates
whether the benefit of a compact and non-redundant repre-
sentation outweighs the potential loss of fidelity, building
on previous studies indicating that key diagnostic informa-
tion is largely preserved.

3.3. Hybrid Model Architecture

A hybrid architecture was designed to use a CNN for
feature extraction and a Transformer for contextual model-
ing. The Transformer’s output is fed into a Multilayer Per-
ceptron (MLP) for the final classification. Figure 1 shows
a diagram of this architecture.

The stack of 1D convolutional layers processes the in-
put signal. This part acts as a local feature extractor,
learning to identify morphological patterns in the signal.
Through layers of convolution, normalization, and pool-
ing, the CNN transforms the signal into a shorter, denser
sequence of feature vectors.

The feature sequence generated by the CNN is fed into a
Transformer encoder. This component, through its multi-
head self-attention mechanism, models long-term tempo-
ral dependencies in the signal. A special classification to-
ken ([CLS]) is prepended to the sequence to aggregate the
contextual information of the entire segment into a single
representation vector.

The feature vector corresponding to the [CLS] token
is then passed to a final MLP. After an initial normaliza-
tion, the MLP projects the input through dense layers with
Dropout to produce a single logit, which is mapped to a
probability using a sigmoid function.

3.4. Training and Evaluation Strategy

For the experimentation, multiple development sets
were generated by varying the balance ratio and the signal
representation (ECG vs. VCG). Each configuration was
trained and its hyperparameters optimized using its own
training and validation subsets. The final performance of
each optimized configuration was evaluated on the held-
out test set to ensure a fair and rigorous comparison.

Each experimental configuration was trained using the
Adam optimizer, a Focal Loss function to address class
imbalance and regularization techniques such as Lead
Dropout and a learning rate scheduler. To optimize the
model, an empirical hyperparameter search was conducted
(including learning rate, weight decay, alpha and gamma),
selecting the combination that maximized the AUPRC on
the validation set. Early stopping was employed to prevent
overfitting during this process.

4. Results and Discussions

4.1. Data & Sampling Strategy

Table 1 summarizes the composition of the datasets
used. It details the three training set configurations gen-
erated by varying the balance ratio, along with the class
distribution of the held-out test set, which has a 2% preva-
lence of positives. This structure allows us to evaluate how
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Figure 1. Model Architecture Scheme.

different training data compositions affect performance in
a realistic and consistent testing scenario.

Table 1. Distribution of classes in the datasets used for
training and evaluation.
Dataset N Positives N Negatives Prevalence
Ratio 1:1 7392 7392 50.0%
Ratio 3:1 7392 22176 25.0%
Ratio 5:1 7392 36960 16.7%
Held-out test set 798 39003 2%

4.2. Model Performance Analysis

Table 2 summarizes two main findings regarding model
performance: First, increasing the balance ratio during
training consistently enhances performance. For instance,
in the ECG-12 representation, the Challenge Score in-
creases from 0.363 (ratio 1:1) to 0.405 (ratio 5:1), indi-
cating that greater exposure to a broader range of negative
cases improves model generalization.

Table 2. Performance of best hyperparameters configu-
ration for each combination of signal representation and
balance ratio on the held-out test set.
ID Repr. Ratio AUROC Challenge Score AUPRC
M1 ECG-12 1:1 0.805 0.363 0.139
M2 ECG-12 3:1 0.819 0.388 0.153
M3 ECG-12 5:1 0.811 (0.652) 0.405 (0.174) 0.160 (0.059)
M4 VCG-3 1:1 0.791 0.362 0.130
M5 VCG-3 3:1 0.805 0.377 0.146
M6 VCG-3 5:1 0.810 0.402 0.159
The M3 model was our final submission. The average metrics achieved
on the official hidden test sets are in parentheses.

Second, the 12-lead ECG representation slightly outper-
forms the VCG. Although the VCG provides a more com-
pact representation, its performance is consistently lower,
as observed in the Challenge Score (0.405 for ECG-12 vs.

0.402 for VCG-3 with a 5:1 ratio). A plausible explanation
is that the DT, being an estimate, may introduce subtle dis-
tortions that degrade diagnostic information.

Consequently, the M3 model (ECG-12, ratio 5:1)
emerges as the optimal configuration, underscoring the im-
portance of maximizing the volume of training data while
preserving the full richness of the original input signal.

Table 3. Final comparison of best performance by signal
representation in the held-out test set (2% prevalence).

Metrics ECG-12 (M3) VCG-3 (M6)
Challenge Score 0.405 (0.174) 0.402
AUPRC 0.160 (0.059) 0.159
AUROC 0.811 (0.652) 0.810
F1 Score 0.152 (0.092) 0.146
Precision 0.088 0.084
Recall 0.564 0.551

The average metrics achieved on the official hidden test sets are in paren-
theses. VCG model was not submitted

Table 3 presents a direct performance comparison be-
tween our two best final configurations, one based on 12-
lead ECG (M3) and the other on 3-lead VCG (M6), both
evaluated on the challenging held-out test set with a 2%
positive prevalence.

The analysis reveals that the model using the 12-
lead ECG representation demonstrates a consistent, albeit
slight, superiority across most key metrics. This reinforces
that while the VCG representation is more compact, the
unaltered signal information present in the full 12 leads is
beneficial for the model’s discriminative capacity in this
task.

On the held-out test set, the performance of the M3
model (ECG-12, 5:1 ratio) demonstrated its effectiveness
in a realistic screening scenario. It achieved a high recall
of 0.564, meaning it identified over half of the affected
individuals. In this low-prevalence environment, the con-
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sequence was a precision of 0.088, a value over four times
the 2% baseline, indicating highly informative alerts.

In the official evaluation phase, the model achieved a
mean Challenge Score of 0.174. This performance drop
from our development set is likely due to domain gener-
alization challenges, such as different disease prevalence
and patient demographics in the hidden data.

5. Conclusion

This study demonstrates, beyond the challenge, the po-
tential of deep learning as a tool for the early diagnosis of
ChD. Our model is proposed as an effective initial screen-
ing system, designed to identify high-risk patients who
would benefit most from a confirmatory serological test.
This approach could help prioritize clinical resources and
streamline the diagnostic process for at-risk populations.

Although overall performance remains moderate, this
analysis provides two key methodological insights. First,
the exploration of VCG-derived representations highlights
their feasibility as a compact alternative to conventional
12-lead ECGs, even if their current performance is slightly
lower. Second, the systematic evaluation of data balancing
strategies demonstrates their clear effect on model gener-
alization, emphasizing the importance of dataset composi-
tion in arrhythmia classification. These findings contribute
to a better understanding of model behavior under realistic
and imbalanced conditions.

The main limitation is its low precision, which leads to
a high rate of false positives, a common challenge in low-
prevalence problems. However, we propose its use as a
clinical decision support system, where the model’s alerts
act as a ”second reader” to motivate a more thorough re-
view of the case by a specialist. This synergy between AI
and clinical expertise represents a promising avenue for
improving early detection and preventing irreversible car-
diac damage.

The competitiveness of this approach was validated in
the official phase of the Physionet Challenge, where our
model achieved a mean Challenge Score of 0.174, posi-
tioning us among the top 30 teams selected for publication.

Code Availability

The source code for the models and experiments pre-
sented in this paper is publicly available on GitHub at: EP-
BandoleroLab Team Code
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